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A new spectral relation for Chebyshev-Laguerre polynomials is derived and its use to construct an exact solution of the antiplane 
problem of the theory of elasticity on the diffraction of a shock SH-wave by a semi-infinite crack is described, when this wave is 
incident on the crack at an arbitrary angle. The problem is reduced to an integro-differential equation by the method of 
discontinuous solutions. An exact solution of this equation using the spectral relation obtained is given. A formula is obtained 
for the scattered wave and for the stress intensity factor. © 1999 Elsevier Science Ltd. All rights reserved. 

1. D E R I V A T I O N  O F  T H E  S P E C T R A L  R E L A T I O N  

We will calculate the Four ier  t ransform of  the expression 

d 1 K ° ( l ~ - ° l )  l~-~(2o)do,  p.~l (1.1) 
J~)(~)ffi  1 -  -~ eOO~_~ t - .  , 

H e r e  Ko(z) is the M a c D o n a l d  funct ion and L~n(Z) is a Chebyshev-Laguer re  polynomial .  I f  we use the 
convolut ion theo rem [1] and use the fact that  [2, formulae 7.414(8) and 8.4332(5)] 

L.~-~ (2t) _ F(~+l . t+n) (a- i ) "  
0 eft ~-"  e i ~ d t -  (-i)~+~(o~+i) "+"+~n! 

we can write 

1 ~ Ko(t)ei~dt 1 

r(½+la+n)l(~) 1(~)= 1 ]' (a-i)"+½e-igda 
j t~t)(~) = f+Y2n! , ~ _.  (a + i) u+n 

It  can be shown that  the condit ions o f  Jordan ' s  lemma are satisfied here, and hence  

i)"+~e-i°~] 2~-~t ( - i )~+"( - l ) "  Ln~+-~_ l (2~) 
t(~) = - i  Res ( a -  i),,+. = - i  

(a + a=-i F( -n  - ~ )F(n  + 3/2) 

(we have used formula 8.974(1) from [1] to obtain the last equality). Hence, by (1.2) 

Jn(la)(~) = ( - l )  21a 2 ~-~t F ( ~  + I a + n)L'~+-~_ i (2~) / n! 

Assuming la = 1 in (1.1) and (1.3), we obtain the spectral relation 

1- d2 )1 " 42F(n+-~)L~(2~) - ~  ) ;  ! Ko(l~-°l)e-"'~t-°L~ (20)dO= n!e ~ 

0 < ~ < * * ,  n = 0 , 1 , 2  .... 

(1.2) 

(1.3) 

(1.4) 
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Below we will need the value of the function (1.1) to be on the negative part of the real axis and 
hence it is necessary to change the evaluation of the integral from (1.2): we deform the real axis into 
a line along the edges of the cut along the imaginary axis from the point i to i°~ and choose that 
branch of the function ~/(a - i) which takes the value [ ~/(~ - i) I en/4~ on the right edge and the value 
I ~[(~ - i) l ei3/4~ on the left edge. Then, if ~ < 0, Jordan's lemma is satisfied. 

Hence, after an obvious replacement of the variable of integration, the integral from (1.2) takes the 
form 

e~ l~ (~) tn+ Y2 e t~ 
I(~)=~, l"(~)=i (t+2) n+~dt' ~<0 

where, by formula 9.211(4) from [2] 

l~(g) = 2 ~ - " r ( n  + 3A)v(n + 3A;N-  g;2 I~ I), ~ < 0 

where q~(z) is the degenerate hypergeometric function of the second kind. Hence 

J~(~) = F ( ~  + g + n)e~l~(~)  Inn! ,  ~ < 0 

(1.5) 

(1.6) 

2. T H E  A N T I P L A N E  P R O B L E M  OF T H E  D I F F R A C T I O N  OF 
AN E L A S T I C  S T E A D Y  SH-WAVE BY A S E M I - I N F I N I T E  C R A C K  

We will apply the spectral relation obtained to a specific problem of fracture mechanics. Suppose 
that, in an unbounded elastic isotropic medium with shear modulus G, Poisson's ratio g and density p, 
there is a crack (defect), which coincides with the half-plane 

y = O ,  0~<x<  ~o, - - ~ < z < o o  (2.1) 

An SH-wave of  the form [3] 

w ° (x, y, t) = - A ( c t  - to)H(ct  - to), c 2 = Gp -t , to = x sin tx - y cos ct (2.2) 

is incident on this defect, where H(x )  is the Heaviside function, A is a fixed number and ¢t is the angle 
of incidence of the wave. When there is no defect this wave causes shear stresses in the elastic medium 

x°z (x, y, t) = A G  cos oJ'l(ct - to) (2.3) 

It is required to find the distribution of the strains and stresses 

w ( x , y , t )  = w(x ,  y , c - l x )  =v  (x, y, 'O, "f = ct 

x~ z (x, y, t) = xy z (x,  y, c -~x) = T(x ,  y, x) (2.4) 

after wave (2.2) is incident on defect (2.1) and to calculate the stress intensity factor 

Km(X ) = lim ~/2nlxl T(x ,O,x)  (2.5) 
x--~--0 

The problem can obviously be reduced to the solution of the wave equation 

02° (x 'Y '~ . ) .+OZv(x 'Y '~  ) 02v(x 'Y'~)=0,  Ixl<.o, y ~ 0 ,  ~ > 0  (2.6) 
0x 2 ay2 ~ 2  

with zero initial conditions and when the following conditions are satisfied on defect (2.1) 

(o(x,O,x)) = u(x, --0, ~)--u (x, +0, ~) = ~x ,  x) # 0, x > 0 

T (x, i'O, x) = 0, x ~ 0 (2.7) 

We will construct the solution of problem (2.6), (2.7) in the form 



where 
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v (x, y, x) = o°(x, y, "¢) + v'(x, y, X) (2.8) 

and by (2.2) and (2.3) 

T(x, y, "0 = GOv (x, y, "O/by = T O (x, y, x) + T I (x, y, x) (2.9) 

tP(x, y, ~) = -A (x--to)H(~-4o), T ° (x, y, x) = AG cos oc H(x-to) (2.10) 

where ul(x,y, x) is the discontinuous solution [4, 5] of wave equation (2.6) for defect (2.1). We construct 
it in exactly the same way as in the case of a spherical defect [5]. We apply a Laplace integral transfor- 
mation and a Fourier transformation in succession using the classical scheme 

vpl(x,y)=y e-mv(x,y,'Od'c, o~(y)= ~ vlp(x,y)eiaXdx 
0 - o n  

and then a Fourier integral transformation with respect toy 

v l p ~ = ( ~ + ~ ) o l ~ ( y ) e " d Y  

using the generalized scheme [4]. After inverting the Fourier transformant, we obtain the Laplace 
transformant of the required discontinuous solution in the form 

v ~(/ ,y)= 1{~,. (v~ (s,O))Ko(pY)ds+ d'-~y](v ~(s,O))Ko(pY)ds } (2.11) 

where 

- ~ < x ,  y<~,,  Y = 4 ( x - s ) 2 + y  2 

I ~O~(s,y) _~yOl(s, yt~.=+O = (v p(S,0)) 
ry I,.=4 

(2.12) 

The second equality follows from the fact that in (2.8) the first term together with its derivatives have 
no discontinuity at the defect. For the same reason 

(u ],(s, 0)) = (u p(s, 0)) = y e-m {u (s, 0, x))dx = ~,(s) (2.13) 
0 

We write formulae (2.10) in Laplace transforms as 

v °(x,y) = -Ap-2e-~p -l, T°(x,y)= Aacosff.e - ~  (2.14) 

By virtue of (2.7) and (2.8) (v~({, 0)) = 0 and (Op(~, 0)) = q)p(~). Consequently, the discontinuous 
solution (2.11) can be rewritten m the form 

o],(x,y)= ~q--l y 9,(s)Ko(pY)ds 
oy x 0 (2.15) 

and then by (2.9) 

~2 
L ' ( x , y )  = G ( x , y )  =  ,(S)ro(pr s 

g o  

but the integral Jp(x, y), by construction, satisfies the equation 

~2jp(x,y)/~x2 +~2jp(x,y)/~y2 - p2jp(x,y) = 0 



66 G. Ya. Popov 

and therefore (2.9) can be written in the form 

Tt,(x,y)= AGcosotp- le -°~P+(p2-~lG~ Ox ) rc Jo tPP(s)r°(pr)ds (2.16) 

By realizing the second condition from (2.7), written in Laplace transforms, using (2.16) we reduce 
the problem to an integro-differential equation 

p 2 - ~ x  2 - ~  (pt,(S)ro(plx-sl)ds=fp(x)=~-Acosae-'X""ap -', x>~O (2.17) 

3. C O N S T R U C T I O N  OF THE EXACT S O L U T I O N  
OF THE PROBLEM 

If we temporarily assume the parameter p to be positive and make the following substitution 

x - - s = - ,  p % ,  = ~ ( ~ ,  p) ,  = g(~,  p )  
P P 

it then takes the form 

(3.1) 

d 2 ) !  ~ 
1---~-f )-~ ~ ¥(t~,p)Ko(l~-oI)do=g(~,p), ~>>-0 (3.2) 

and to construct its accurate solution we can use the method of orthogonal polynomials [4], basing 
ourselves on spectral relation (1.4), i.e. we construct the solution in the form 

¥(o, p) = ~, af~e-aL~(20)~n(p) (3.3) 
n=0  

Substituting this series into (3.2) and using (1.4) and the orthogonality of Chebyshev-Laguerre 
polynomials we can obtain an explicit expression for the coefficients of the expansion in (3.3) 

~tn(p) = 2g n (p)n¢ F-2(n + ~)  (3.4) 

where (by (3.1), (2.17) and formula 7.714(8) from [21]) 

g,,(p) = ~ ~/~e-~g(~, p)L~ (2~)d~ = (-1)nF(n+~) R~, 
o n[pr a seca 

! - s ins  r a=(l+sina)  ~, n=0,1,2 .... Re= 
l + s i n a  

Consequently, if we return to the original variable given by (3.1), we can write the solution of Eq. 
(3.2) as 

2Acosa.~P~ ~ (-1)"n!L~n(2ps) (3.5) 
9p(s) = p2raeP s n=0 F(n + 3~)p~n 

The Laplace transform of the scattered wave will be determined by (2.15). We will recover the original. 
1 Suppose ~-  is the operator of the inverse Laplace transformation. Then [6] 

Bear in mind that [7] 

0, 0 < x < Y (3.6) 
~'-I K°(PY)= f2(x)= (x2-y2)  -~,  x > Y 

~_ip_n_VL~(p) = (I + "r)n I; v-' pa,v_j('C - I~ 
r ( n  + v )  " ~ x + 1 )  

(3.7) 
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Then, using formula 8.962(1) from [2], we can obtain two representations for the Jacobi polynomials 
in (3.7) 

p~.V_t (x -1]= (-I)"(v), F( -n . -n -a ;v ; -%)= (a+l)n%" F ( _ n , _ n _ v + l ; a + l ; _ l )  (3.8) 
k x + l J  n!(x+l) n n!(%+ !)" X 

If we now take into account the fact that [8] 

~£-t e-~* = 8(x-s) 

(8(x) is the Dirac function), and use the similitude theorem and once again the convolution theorem 
for the Laplace transform [9], we can obtain (taking (3.7) and (3.8) into account) 

~-i  e-P~(2ps)-,-v L~(2ps) = fl (x) (3.9) 

fl(x)m0, s>x; fl(x)= Z - s  (-l)n(2s) n ,4 e 1 3 s - X ~  S~sS . . . .  rl - n , - n - - -  ;-- - n ; ~ L  x > s (3.10) 
n[F(~- n) k 2 2 28 )" 

Consequently the original of solution (3.5) of integral equation (2.17), by virtue of (2.13), (3.5) and 
(3.9), can be written in the form 

x/2A(2s) 2 (-l)nn!A(%) 
"~-t%'(s)=(v(s'O'x))= ----raseca .~'o= ~ (3"11/ 

Having formulae (3.6) and (3.11), to invert transform (2.15) it is sufficient to use the convolution 
theorem. We obtain 

o 3 2~+2A ~, ( - I ) " M I ~ I .  
"~-'vlp(x'Y)=3ygraseclx,=o F(n + 3~2 ) 

(3.12) 
I. = ~s 2 I(~, s)as, I(~, ~) = I ~ (~)A (~ - . ) a .  

0 0 

We will derive the conversion of the last integral. Taking into account the structure of the functions 
f1(t) andf2(x) given by (3.10) and (3.6) we find 

andhence 

t(t,s)=-o, x<s,  t - s < r ;  t(x,s)=J.(t,s), t - s > _ r  
' I--$ 

Y 

I k = IsZJ.(x,s)ds (3.13) 
0 

From (3.10) and (3.6) we obtain 

J.(x,s)  = (--1)"(2S)n-'~ r - I  
n ' F ( Y 2 - n  ) o [(1_ oXY+ - y_o)]~ (3.14) 

(we have used the replacement ~ -- (Y  + Y - o ( Y  +- = t - s +- ii)). 
Taking relations (3.121, (3.13) and (3.14) into account, we finally obtain for the scattered wave 

R \B 
v l (x ,y , .O=-16Acosa  0 ff'o (-2 a) x 
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, 

4. A FORMULA FOR THE STRESS INTENSITY FACTOR 
To calculate the stress intensity factor (SIF) we must take the limit in (2.5), which in Laplace transforms 

can be written in the form 

K(p)=~Ktl,tt(x)e_etd.c=lim2~-~lTp(x,O)= 2ff~x lim ~f~]Tp/~0~ (4.1) 
"~ o ~l P ~- , -o , '" C P ) 

where, by (2.16) (taking the replacements (3.2) into account), we have 

aGpOSOt d 2 G ~ t~, 
Tp(~,O/= exp(~sin a / +  ( ! -  ~ T ) ~ "  o (P 'Ko(~-oOdt~  (4.2) 

The first term, by virtue of its continuity, makes no contribution to the transformant of the SIF and 
hence it can be dropped. We substitute series (3.3), (3.4) into the second term in the integrand. Then 

n"t . .  

v(t') 2~aGc°sa  ,~ F_~n+3/~)i~maj~jn I,q) (4.3) am = .~"~ p~ ra n=0 

If we bear (1.6) in mind, we can write 

F(n + 
l i r a  ~ j ! l ) ( ~ ) =  , ni.~ z, l i m  ~/~[1~-(~) (4.4) 

In order to isolate the singular part in the last integral as ~ ---> -0 we bear in mind that the functions 
sn(s + 1) --n - 1 and (1 + s-l) -1 - 1 behave at infinity as O(s-1). Then, representing the integral in 
the form 

1/(~)=! " ~ i ' + l )  e-2Sl~[ds+i~(l+tlls lids ~ e-2"~ 

and using formula 3.361(2) from [2] we find that 

and hence 

Substituting this result into (4.4) and then into (4.3), after summing the simple numerical series we 
obtain the transform of the SIF 

K(p) = AGcoso~ 
m ~/1 + sin ctp3/2 

Inverting it using the well-known formula [6], we obtain the SIF 

2AG cos ot~/~ 
Kin(x) = ~/x(I  + sin IX) 
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It is identical in structure with the result obtained by Cherepanov [10] for a related problem, but by 
a basically different method. 

5. C O N C L U S I O N  

Hence we have shown that the spectral relation obtained can be effectively used to construct an exact 
solution of a well-known problem. This solution can also be constructed by the factorization method, 
as was done previously in [10]; in this case double quadratures are obtained, one of which, moreover, 
is singular. One of the advantages of the approach based on spectral relation (1.4) is the absence of a 
singular quadrature. 

We will describe how the proposed approach can be used to obtain an effective approximate solution 
of new more-complex problems in fracture mechanics. 

Consider the following problem.~" An unbounded elastic medium contains a crack, which coincides 
with the surface 

r = R,-rt <~l< n, O< z < ~ (5.1) 

on the sides of which r = R ¢ 0 shear (torsion) stresses 

~,~ (R + O, Z, X) = H(x)f(z), 0 < z, x < ~ (I: = ct) (5.2) 

are applied, where f(z) is a specified function. It is required to determine the stress and strain fields 
due to such a shock load. By constructing the discontinuous solution of the equations of motion of the 
elastic medium for defect (5.1) using the scheme described in [5, 11], we can reduce the problem to 
integro-differential equation (2.18), in which we must substitute 

x - ~  z, s - ~ ; ,  go(plx-s l ) -~  H , ( z - ; )  

:,(x)--, 4(Rp) f(z), 

, p ( z - ~ ) =  ~ j ~ 1 2 ( R ~ ) K 2 ( R ~ ) e - t ~ ' ( z - ~ ) d ' L  

where U~ is the Laplace transform of the strain U~(r, z, x) with respect to the variable x. After 
making the change of variables ~. = op, z = ~, ~ = cp we arrive at Eq. (3.2) with the following 
correction 

Ko(l -ol)= 
, ~ ( ~  - 0)-- 2,--~I 2 ( R p ~ ) K 2 ( R p ~ ) e - i a ( ~ - ° ) d o ~  (5.3) 

p) = 4(Rp)-' 

To apply spectral relation (1.4) to the solution of the equation we separate the irregular part from 
the kernel (5.3). If, for simplicity, we confine ourselves to considering the oscillations during the initial 
period (small values of the time) and take into account that this corresponds to large values of p, this 
irregular part can easily be separated using the well-known [2] asymptotic representations of modified 
Bessel functions for large values of the argument, i.e. 

tThis is taken from the dissertation of Yu. A. Morozov, prepared under my supervision. 
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k (-l)qF(5i~2+q)F(5/l~2+k-q) 
Ck = ~, ,#:o F(5/~ 2 - q)F(5/~ 2 - k  + q)ql(k -q)! 

This enables the integro-differential equation of the problem to be represented in the form 

(1 _..~2 ) ~ i[Ko(ll~- Oi) + Rp(~_a)~lt(~,p)d~= 4 f (~ /p )  (5.4, 

0-<~<<~ 

where the regular part of the kernel has the representation 

",~JJ°,'X~= 27 ~)-;c°s°0~ _~ c~ da  k 

The presence of spectral relation (1.4) enables us to use the method of orthogonal polynomials [4] 
for the effective approximafe solution of Eq. (5.4), i.e. as before, we construct the solution in the form 
(3.3). By carrying out the standard procedure of the method of orthogonal polynomials, we obtain the 
following infinite system of algebraic equations 

qln(p)+ ~. dnm(p)lpm(p)=fn(p ), n=0,1,2 .... 
I#l=O 

where 

(pn (p )=anWn(p ) ,  a n =(n!)- iF(3/~ 2 ÷ n )  

f.(p) = 1__ 7 f(~/ P)~l-~ e-~Ll,,/2 (21~)d~ 
Po 

® -# (k )  (-1) m+'' ** ~,(-oc)Jn(a)d "k "  m,n , .l(k) _ J 

d.(p)= k'~--I (2Rp)kana,,, -.,n 2it ~= "---'~-k'~'7-~.~(o~ + 1) - 

o 

All the integrals in y k  can be evaluated in finite form. We have 

(_l)m+"+'/-"l ,m-.I (-2b~-nl)2q(-l)qC(q+~) 

r0m-,,J + q + '/2) 
The infinite system obtained is most simply solved by the asymptotic method of large parameters p 

[12]. To do this we construct its solution in the form 

.... (5.5) 
j=O 

In this case, if the specified function f(z) is expanded in a Maclaurin series, the right-hand side of the 
equation will be expanded in inverse powers ofp. 

By using the asymptotic method of largep we obtain explicit analytic expressions for the coefficients 
in expansion (5.5) with %0 = 0. As a result, the solution of the initial equation will also be expanded 
in inverse powers ofp. By applying an inverse Laplace transformation to this expansion, we obtain the 
asymptotic solution of the problem for small values of time. 
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